
[Reddy, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[256-260]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Canny Edge Detection using Verilog
D Narayana Reddy1, Mohan A R2, Subhramanya Bhat3

PG Student [Electronics], Dept. of ECE, Canara Engineering College, Mangalore, Karnataka, India 1

Assistant professor, Dept. of ECE, Canara Engineering College, Mangalore, Karnataka, India 2

Associate professor, Dept. of ECE, Canara Engineering College, Mangalore, Karnataka, India 3

narayareddy139@gmail.com

Abstract
Edge detection is one of the key stages in image processing and objects identification. The Canny Edge

Detector is one of the most widely used edge detection algorithm due to its good performance. Edge detection

carries preprocessing step for many image processing algorithms such as image enhancement, image segmentation,

tracking and image/video coding. Canny’s edge detection algorithm that results in significantly reduced memory

requirements decreased latency and increased throughput with no loss in edge detection performance as compared to

the sobel algorithm. The proposed canny edge detection in verilog algorithm gives good localization. Here we are

using matlab to convert image into text/ pixel value. Then we will apply verilog canny algorithm to text/pixel value,

then we will get edged text/pixel value, that text will given to matlab and finally get edged output image.

Keywords: Canny edge detection, non maximal suppretion, thresholding.

Introduction
Edges characterize boundaries and are

therefore a problem of fundamental importance in

image processing. Edges in images are areas with

strong intensity contrasts – a jump in intensity from

one pixel to the next. Edge detecting an image

significantly reduces the amount of data and filters

out useless information, while preserving the

important structural properties in an image. This was

also stated in Sobel and Laplace edge detection, but I

just wanted reemphasize the point of why you would

want to detect edges. The Canny’s edge detection

algorithm is known to many as the optimal edge

detector.

Here followed a list of criteria to improve

current methods of edge detection. The first and most

obvious is low error rate. It is important that edges

occurring in images should not be missed and that

there be NO responses to non-edges. The second

criterion is that the edge points be well localized. In

other words, the distance between the edge pixels as

found by the detector and the actual edge is to be at a

minimum. A third criterion is to have only one

response to a single edge. This was implemented

because the first 2 were not substantial enough to

completely eliminate the possibility of multiple

responses to an edge. And finally the proposed

methodology gives less time consuming compared to

other edge detection.

Canny Edge Detection
The popular canny edge detector uses the

following steps to find contours presents in the

image. The first stage is achieved using Gaussian

smoothing. The resulting image is sent to the PC that

sends it back to the gradient filter, but here we

modified our gradient filter a bit because this time we

don't only need the gradient magnitude that is given

by our previous operator, but we need separately Gx

and Gy. We also need the phase or orientation of our

gradient which is obtained using the following

formula: θ = arctan (Gy/Gx) as we can see, this

equation contains an arctan and a division. These

operators are very difficult to implement using

hardware. We also don't need a high precision.

Arctan and the division can be eliminated by simply

comparing Gx and Gy values. If they are of similar

length, we will obtain a diagonal direct ion, if one is

at least 2.5 times longer than the other, we will obtain

a horizontal or vertical direction.

After the edge directions are known, non-

maximum suppression is applied. Nonmaximum

suppression is used to trace pixels along the gradient

in the edge direction and compare the value s

http://www.ijesrt.com/
narayareddy139@gmail.com

[Reddy, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[256-260]

perpendicular to the gradient. Two perpendicular

pixel values are compared with the value in the edge

direction. If their value is lower than the pixel on the

edge, then they are suppressed i.e. their pixel value is

changed to 0, else the higher pixel value is set as the

edge and the other two are suppressed with a pixel

value of 0.

Finally, hysteresis is used as a means of

eliminating streaking is the breaking up of an edge

contour caused by the operator output fluctuating

above and below the threshold. If a single threshold,

T1 is applied to an image, and an edge has an average

strength equal to T1, then due to noise, there will be

instances where the edge dips below the threshold.

Equally it will also extend above the threshold

making an edge look like a dashed line. To avoid

this, hysteresis uses 2 thresholds, a high and a low.

Any pixel in the image that has a value greater than

T1 is presumed to be an edge pixel, and is marked as

such immediately. Then, any pixels that are

connected to this edge pixel and that have a value

greater than T2 are also selected as edge pixels. If

you think of following an edge, you need a gradient

of T2 to start but you don't stop till you hit a gradient

below T1.

Fig1: Block diagram of canny edge detection

Step1

In order to implement the canny edge

detector algorithm, a series of steps must be

followed. The first step is to filter out any noise in the

original image before trying to locate and detect any

edges. And because the Gaussian filter can be

computed using a simple mask, it is used exclusively

in the Canny algorithm. Once a suitable mask has

been calculated, the Gaussian smoothing can be

performed using standard convolution methods. A

convolution mask is usually much smaller than the

actual image. As a result, the mask is slid over the

image, manipulating a square of pixels at a time. The

larger the width of the Gaussian mask, the lower is

the detector's sensitivity to noise. The localization

error in the detected edges also increases slightly as

the Gaussian width is increased.

Image smoothing is the first stage of the

canny edge detection. The pixel values of the input

image are convolved with predefined operators to

create an intermediate image. This process is used to

reduce the noise within an image or to produce a less

pixilated image. Image smoothing is performed by

convolving the input image with a Gaussian filter. A

Gaussian filter is a discrete version of the 2-

dimensional function shown in equation (1).

𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
exp (−

(𝑥2+𝑦2)

2𝜎2
) (1)

In (1), σ is the standard deviation of the Gaussian

filter, which describes the narrowness of the peaked

function, and x and y are spatial coordinates.

Step2
After smoothing the image and eliminating

the noise, the next step is to find the edge strength by

taking the gradient of the image. The Sobel operator

performs a 2-D spatial gradient measurement on an

image. Then, the approximate absolute gradient

magnitude (edge strength) at each point can be found.

The Sobel operator uses a pair of 3x3 convolution

masks, one estimating the gradient in the x-direction

(columns) and the other estimating the gradient in the

y-direction (rows).

In this stage, the blurred image obtained

from the image smoothing stage is convolved with a

3x3 Sobel operator. The Sobel operator is a discrete

differential operator that generates a gradient image.

Sobel operators used to calculate the horizontal and

vertical gradients. The sobel operators are shown in

Fig 2.

Fig 2: Sobel Operators.
Calculating Edge Strength

The Sobel operators from equation (2) are

Input Image Smoothing
Horizontal&vertical

Gradient

Gradient Magnitude
And Gradient

Direction

Nonmaximl
Suppresion

Compute High &
Low Thresholds

Hysteresis
Thresholoding

Edged Output

gx =

gy =

-1 0 +1

-2 0 +2

-1 0 +1

-1 -2 -1

0 0 0

+1 +2 +1

http://www.ijesrt.com/

[Reddy, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[256-260]

used to obtain a gradient image. To obtain the

gradient image, a smoothened image from the first

stage is convolved with the horizontal and vertical

Sobel operators as shown in equations (2.a) and (2.b),

respectively.

𝐺𝑥 = (𝐼 ∗ 𝑔𝑥) (2.a)

𝐺𝑦 = (𝐼 ∗ 𝑔𝑦) (2.b)

In (2), I is the image obtained after Image smoothing;

Gx and Gy are images with pixel values that are the

magnitude of the horizontal and vertical gradient,

respectively. Images Gx and Gy from equations (2.a)

and (2.b) are used in equation (2.1)to obtain the

“edge strength” of a pixel in an image. The edge

strength G is

|𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2 (2.1)

The magnitude, or edge strength, of the gradient is

then approximated using the formula 2.2:

|𝐺| = |𝐺𝑥| + |𝐺𝑦| (2.2)

Step3:

The direction of the edge is computed using

the gradient in the x and y directions. However, an

error will be generated when sum is equal to zero. So

in the code there has to be a restriction set whenever

this takes place. Whenever the gradient in the x

direction is equal to zero, the edge direction has to be

equal to 90 degrees or 0 degrees, depending on what

the value of the gradient in the y-direction is equal to.

If GY has a value of zero, the edge direction will

equal 0 degrees. Otherwise the edge direction will

equal 90 degrees. The formula for finding the edge

direction is just:

“Edge direction is defined as the direction of

the tangent to the contour that the edge defines in 2-

dimensions”. The edge direction of each pixel in an

edge direction image is determined using the

arctangent

θ = arctan (
𝐺𝑦

𝐺𝑥
⁄) (3)

 Step4:

The edge strength for each pixel in an image

obtained from equation (2.1) is used in non-

maximum suppression stage. The edge directions

obtained from equation (3) are rounded off to one of

four angles 0 degree, 45 degree, 90 degree or 135

degree before using it in non-maximum suppression,

as shown in Figure 3.

Fig 3: Edge directions are rounded off to one of the

four angles.

Step5:

After the edge directions are known, non

maximum suppression now has to be applied. Non

maximum suppression is used to trace along the edge

in the edge direction and suppress any pixel value

(sets it equal to 0) that is not considered to be an

edge. This will give a thin line in the output image.

Non-maximum suppression (NMS) is used

normally in edge detection algorithms. It is a process

in which all pixels whose edge strength is not

maximal are marked as zero within a certain local

neighborhood. This local neighborhood can be a

linear window at different directions of length 5

pixels. The linear window considered is in

accordance with the edge direction of the pixel under

consideration for a block in an image as shown in

Figure 4.

Fig 4: Linear window at the angle of (a) 135° (b) 90° (c)

45° (d) 0°.

Step 6

Thresholding with hysteresis is the last stage

in canny edge detection, which is used to eliminate

spurious points and non-edge pixels from the results

of non-maximum suppression. The input image for

thresholding with hysteresis has gone through Image

smoothing, calculating edge strength and edge pixel,

and the Non-maximum suppression stage to obtain

thin edges in the image. Results of this stage should

give us only the valid edges in the given image,

which is performed by using the two threshold

values, T1 (high) and T2 (low), for the edge strength

of the pixel of the image. Edge strength which is

greater than T1 is considered as a definite edge. Edge

strength which is less than T2 is set to zero.

http://www.ijesrt.com/

[Reddy, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[256-260]

The pixel with edge strength between the

thresholds T1 and T2 is considered only if there is a

path from this pixel to a pixel with edge strength

above T1. The path must be entirely through pixels

with edge strength of at least T2. This process

reduces the probability of streaking. As the edge

strength is dependent on the intensity of the pixel of

the image, thresholds T1 and T2 also depend on the

intensity of the pixel of the image. Hence, the

thresholds T1 and T2 are calculated by the canny

edge detectors using adaptive algorithms. Thus all the

edges in an image are detected using the canny edge

detection.

Proposed Methodology:

Fig 5: Proposed canny edge detection algorithm.

Algorithm of canny edge detector algorithm

in Verilog is shown in Fig 5.

The canny edge detection consists of following steps:

 Converting input image into pixels by Matlab.

 Performing Canny Edge detector in verilog on

the pixel.

 Get the edge detected image output in pixel

format.

 Using Matlab convert pixels value in the

image.

 Observe the edge detected image output.

Results
The canny edge algorithms is coded in

Verilog. And the simulated wave form using model

sim simulator is shown in Fig 6. The matlab is inter

connected with the Verilog coding, hence the image

is converted to edged image as shown in Fig 7.

Fig 6: Simulation result using ModelSim Simulator.

Fig 7: Results of Canny Edge Algorithm in

Verilog.

This section should be typed in character

size 10pt Times New Roman, Justified

Conclusion
Thus our proposed project will detect the

edges efficiently with reduction in the processing

speed and reduced the memory requirement.

Proposed work will reduce the latency and increase

the throughput.

Acknowledgements
 The authors wish to thank the ECE

Department of Canara Engineering College,

Mangalore, Karnataka, India, for supporting this

work.

References
1. L. Torres, M. Robert, E. Bourennane, and

M. Paindavoine, “Implementation of a recursive real

time edge detector using Retiming techniques,”

VLSI, pp. 811 –816, Aug. 1995.

2. Qian Xu, Chaitali Chakrabarti and Lina J.

Karam, “A Distributed Canny Edge Detector and Its

Implementation On FPGA”, Tempe, AZ.

3. D. V. Rao and M. Venkatesan, “An efficient

reconfigurable Architecture and implementation of

Input Image
Convert Image

Into Text/Pixel By
Using Matlab

Apply Canny Edge
Detection

Algorithm(verilog)

Edge Detected
Image Output

Text/Pixel Values

Convert Text/Pixel
Values Into Image
By Using Matlab

Edged Output

 Original Image Edged Image

http://www.ijesrt.com/

[Reddy, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[256-260]

edge detection algorithm Using Handle-C,” ITCC,

vol. 2, pp. 843 – 847, Apr. 2004.

4. Shengxiao Niu, Jingjing Yang, Sheng Wang,

Gengsheng Chen,”Improvement and Parallel

Implementation of Canny Edge Detection Algorithm

Based on GPU”.

5. W. He and K. Yuan, “An improved Canny

edge detector and its Realization on FPGA,”

WCICA, pp. 6561 –6564, Jun. 2008.

6. T. Rupalatha, Mr.C.Leelamohan,

Mrs.M.Sreelakshmi, “implementation of distributed

Canny edge detector on fpga”. International Journal

of Innovative Research in Science, Engineering and

Technology, Vol. 2, Issue7, July 2013.

7. Chandrashekar N.S, Dr. K.R. Nataraj, “A

Distributed Canny Edge Detector and Its

Implementation on FPGA” International Journal Of

Computational Engineering Research

(ijceronline.com) Vol. 2 Issue.7. Issn 2250-

3005(online) November| 2012.

8. Tejaswini h.r, vidhya n, swathi r varma,

santhosh b, “an implementation of real time optimal

edge detector and vlsi architecture”. International

conference on electronics and communication

engineering, 28th april-2013, bengaluru, isbn: 978-

93-83060-04-7.

BABILOGRAPHY

Mr. Mohan A.R received his M.Tech degree in VLSI Design and Embedded

Systems from SJB Institute of technology, Bangalore in 2011 and B.E. degree from

Coorg Institute of Technology, Ponnampet in 2007. Currently he is working as an

Asst. Professor in the Department of E&C, Canara Engineering College,

Mangalore. His area of interest is Digital VLSI Design.

Mr. Subramanyam Bhatt received his B.E degree from MIT, Mnglore, India. He

obtained his Masters degree from Shree Jayaramachandra College of Engg.

Mysore, India. Currently he is persuing Ph.d from Visweswaraya Technological

University, Belgaum, India and Currently he is working as an Asst. Professor in the

Department of E&C, Canara Engineering College, Mangalore. His area of interest

include Signal and Image processing, power electronics.

D Narayana Reddy received his B.E degree in Instrumentation Engineering from

RYM Engineering College, Bellary in 2012. Currently he is perusing M.Tech

degree in Electronics at Canara Engineering College, Mangalore. His areas of

interest are VLSI and Image Processing.

http://www.ijesrt.com/

